Author:
Xu Qiyan,Gu Zhanghan,Wan Ziwei,Huangfu Mingzhu,Meng Qingmin,Liao Zhiyou,Wu Baoguo
Abstract
The effects of reduction temperature, gas linear velocity, reduction pressure, reduction time, and reducing gas on the fluidized ironmaking process were studied for the fine iron Newman ore particles (0.154–0.178 mm) and the optimal experimental operating conditions were obtained. Under the optimal conditions, the effects of the coated cow dung on the reduction of fine iron ore particles were studied, and the inhibition mechanism of cow dung on particle adhesion in the fluidized ironmaking process was elucidated. The experimental results show that the optimal operating parameters are linear velocity of 0.6 m/s, reduction pressure of 0.2 MPa, reduction temperature of 1023 K, H2 as the reducing gas, and reduction time of 60 min. Cow dung can react with oxide in the ore powder to form a high melting point substance that can form a certain isolation layer, inhibit the growth of iron whiskers, and improve the fluidization.
Funder
National Natural Science Foundation of China-Xinjiang Joint Fund
National Natural Science Foundation of China
the University outstanding young talents funding program
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献