Graphene-PEDOT: PSS Humidity Sensors for High Sensitive, Low-Cost, Highly-Reliable, Flexible, and Printed Electronics

Author:

Popov Vasiliy I.,Kotin Igor A.,Nebogatikova Nadezhda A.,Smagulova Svetlana A.,Antonova Irina V.

Abstract

A comparison of the structure and sensitivity of humidity sensors prepared from graphene (G)-PEDOT: PSS (poly (3,4-ethylenedioxythiophene)) composite material on flexible and solid substrates is performed. Upon an increase in humidity, the G: PEDOT: PSS composite films ensure a response (a linear increase in resistance versus humidity) up to 220% without restrictions typical of sensors fabricated from PEDOT: PSS. It was found that the response of the examined sensors depends not only on the composition of the layer and on its thickness but, also, on the substrate used. The capability of flexible substrates to absorb the liquid component of the ink used to print the sensors markedly alters the structure of the film, making it more porous; as a result, the response to moisture increases. However, in the case of using paper, a hysteresis of resistance occurs during an increase or decrease of humidity; that hysteresis is associated with the capability of such substrates to absorb moisture and transfer it to the sensing layer of the sensor. A study of the properties of G: PEDOT: PSS films and test device structures under deformation showed that when the G: PEDOT: PSS films or structures are bent to a bending radius of 3 mm (1.5% strain), the properties of those films and structures remain unchanged. This result makes the composite humidity sensors based on G: PEDOT: PSS films promising devices for use in flexible and printed electronics.

Funder

the Ministry of Education and Science of Russia

Russian Scientific Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3