Junction Characterization in a Functionally Graded Aluminum Part

Author:

Fracchia ElisaORCID,Gobber Federico SimoneORCID,Rosso Mario,Actis Grande MarcoORCID,Bidulská Jana,Bidulský RóbertORCID

Abstract

Aluminum alloys are widely used to produce automotive components, thanks to their great mechanical properties–to–density ratio. Engine components such as pistons are conventionally produced by casting of Al–Si eutectic alloys (Silumin alloys) such as EN AC 48000. Due to the harsh working conditions and the lower ductility if compared to aluminum–silicon alloys with lower silicon content, pistons made of this alloy are prone to fatigue failures in the skirt region. In order to overcome such limits, the use of a Functionally Graded Material (FGM) in the production of a piston is proposed. The adoption of a functionally graded architecture can maximize the properties of the component in specific areas. A higher level of thermal resistance in the crown of the piston can be achieved with EN AC 48000 (AlSi12CuNiMg), while higher elongation at rupture in the skirt region would be conferred by an EN AC 42100 (AlSi9Mg0.3). The FGM properties are strictly related to the metallurgical bonding between the alloys as well as to the presence of intermetallic phases in the alloys junction. In the present article, the characterization of gravity casted FGM samples based on Al–Si alloys with respect to microstructure and mechanical testing is presented, with a specific focus on the characterization by impact testing of the joint between the two alloys.

Funder

VEGA

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3