Stimulating Role of Calcium and Cyclic GMP in Mediating the Effect of Magnetopriming for Alleviation of Salt Stress in Soybean Seedlings

Author:

Kataria Sunita1ORCID,Shukla Shruti1,Jumrani Kanchan2,Jain Meeta1,Gadre Rekha1

Affiliation:

1. School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore 452001, MP, India

2. Division of Plant Physiology, Indian Institute of Soybean Research, Khandwa Road, Indore 452001, MP, India

Abstract

This current study examined the role of calcium (Ca) and Cyclic GMP (cGMP) in mitigating the adverse effect of salt stress through magnetopriming of soybean cultivar JS-335 seeds with a static magnetic field (SMF, 200 mT for 1 h). The salt stress (50 mMNaCl) extensively reduced the early seedling growth (64%), vigour Index-I (71%), vigour Index-II (39%), total amylase (59%), protease (63%), and nitrate reductase (NR, 19%) activities in un-primed soybean seedlings. However, magnetopriming and Ca treatment enhanced all of these measured parameters along with remarkable increase in reactive oxygen species (ROS) and nitric oxide (NO) content. The exogenous application of Ca2+, cGMP and ROS regulators such as nifedipine (Ca2+ channel blocker), EGTA, ethylene glycol-β-amino ethyl ether tetra acetic acid (Ca2+chelators), genistein (cGMP blocker), and dimethyl thiourea (DMTU, H2O2 inhibitor) negatively affects the SMF-induced seedling length, seedling vigour, ROS, NO, and enzyme activities such as protease, total amylase, and NR in soybean seedlings. Results presented by using specific various biochemical inhibitors of Ca, cGMP, or ROS signalling in vivo indicated that Ca and cGMP are also involved with ROS and NO in the signal transduction of magnetic field enthused soybean seed germination and seedling growth under salt stress.

Funder

Department of Science Technology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3