Abstract
Most of the existing staged evacuation algorithms only consider the impact of crowd density on evacuation partition, but do not take into account the influence of the spatial distribution of occupants and the capacity of exits on the total evacuation time (TET). Therefore, a novel indoor emergency evacuation algorithm based on time equalization is proposed in this paper. All factors affecting TET such as the position and size of each group and the capacity of exits are fully considered in the proposed algorithm, which are uniformly converted into the occupancy time of each exit. An improved Dijkstra algorithm is used to generate evacuation zones according to the proximity relationship and the occupancy time of different exits. The strategy of waiting at the starting point is adopted to ensure that all evacuees are free from congestion during the escape process. In addition, the method of group merging is proposed to further increase the balance among all zones during the partitioning process. The objectives of the proposed algorithm include minimizing the TET of all evacuees, the path length of each escape group, avoiding congestion during the escape process. The experimental results show that the proposed algorithm effectively reduces TET and the path length of groups compared with existing algorithms, which improves the efficiency of evacuation and utilization of all exits and can be applied to the various distribution and density of evacuees.
Funder
Natural Science Foundation of Shandong Province
Natural Science Foundation of Fujian Province
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献