Author:
Zarif Nowsherwan,Khan Attaullah,Wang Qingcheng
Abstract
Atmospheric N deposition is increasing worldwide, especially in China, significantly affecting soil health, i.e., increasing soil acidification. The northern region of China is considered to be one of the N deposition points in Asia, ranging from 28.5 to 100.4 N ha−1yr−1. Phosphorus (P) is the limiting factor in the temperate ecosystem and an important factor that makes the ecosystem more susceptible to N-derived acidification. However, it remained poorly understood how the soil acidification process affects soil P availability and base cations in the temperate region to increased N deposition. To address this question, in May 2019, a factorial experiment was conducted under N and P additions with different plantations in Maoershan Experimental Forest Farm, Northeast China, considering species and fertilization as variables. The effective acidity (EA) increased by N and NP fertilizations but was not significantly affected by P fertilization. Similarly, the pH, base saturation percentage (BS%), calcium (Ca2+), and magnesium (Mg2+) were decreased under N addition, while the Al:Ca ratio increased, whereas NaHCO3 inorganic phosphorus (Pi) and NaOH organic phosphorus (Po) significantly decreased under N enrichments. However, NaOH Pi increased in N-enriched plots, while H2O Pi and NaHCO3 Pi increased under the P addition. Thus, the results suggest that the availability of N triggers the P dynamics by increasing the P uptake by trees. The decrease in base cations, Ca2+, and Mg2+ and increase in exchangeable Fe3+ and Al3+ ions are mainly responsible for soil acidification and lead to the depletion of soil nutrients, which, ultimately, affects the vitality and health of forests, while the P addition showed a buffering effect but could not help to mitigate the soil acidity.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献