Author:
Zhou Jiyuan,Jin Xing,Yu Lanping,Xue Limin,Ren Yizhi
Abstract
On a crowdsourcing platform, in order to cheat for rewards or sabotage the crowdsourcing processes, spam workers may submit numerous erroneous answers to the tasks published by requesters. This type of behavior extremely reduces the completion rate of tasks and the enthusiasm of honest users, which may lead a crowdsourcing platform to a failure. Defending against malicious attacks is an important issue in crowdsourcing, which has been extensively addressed by existing methods, e.g., verification-based defense mechanisms, data analysis solutions, trust-based defense models, and workers’ properties matching mechanisms. However, verification-based defense mechanisms will consume a lot of resources, and data analysis solutions cannot motivate workers to provide high-quality services. Trust-based defense models and workers’ properties matching mechanisms cannot guarantee the authenticity of information when collusion requesters publish shadow tasks to help malicious workers get more participation opportunities. To defend such collusion attacks in crowdsourcing platforms, we propose a new defense model named TruthTrust. Firstly, we define a complete life cycle system that from users’ interaction to workers’ recommendation, and separately define the trust value of each worker and the credence of each requester. Secondly, in order to ensure the authenticity of the information, we establish a trust model based on the CRH framework. The calculated truth value and weight are used to define the global properties of workers and requesters. Moreover, we propose a reverse mechanism to improve the resistance under attacks. Finally, extensive experiments demonstrate that TruthTrust significantly outperforms the state-of-the-art approaches in terms of effective task completion rate.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献