Model-Based Design and Process Optimization of Continuous Single Pass Tangential Flow Filtration Focusing on Continuous Bioprocessing

Author:

Huter Maximilian J.,Strube Jochen

Abstract

In this study the Single-Pass-Tangential-Flow-Filtration (SPTFF) concept for continuous ultrafiltration in bioprocessing is investigated. Based on a previously validated physico-chemical model for a single ultrafiltration cassette, the transfer to a multistage SPTFF is predicted and validated experimentally by concentration steps for bovine serum albumin (BSA) and the monoclonal antibody immunoglobulin G (IgG) are compared. The model applied for the ultrafiltration membrane contains the Stagnant Film Model (SFM) for concentration polarization, as well as the Osmotic Pressure Model (OPM) and the Boundary Layer Model (BLM) for the mass transfer through the membrane. In addition, pressure drop correlations as a function of the Reynolds number are included to describe the development of the transmembrane pressure over the length of the module. The outcome of this study shows the potential to improve this multi-parameter dependent unit operation by a model-based optimization allowing significant reduction of experimental efforts and applying the Quality by Design (QbD) approach consistently. Consequently, a versatile tool for conceptual process design is presented and further application is discussed.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3