Design and Characterization of a Fluidic Device for the Evaluation of SIS-Based Vascular Grafts

Author:

Riveros AlejandraORCID,Cuellar MonicaORCID,Sánchez Paolo F.,Muñoz-Camargo CarolinaORCID,Cruz Juan C.ORCID,Sandoval Néstor,Lopez Mejia Omar D.ORCID,Briceño Juan C.

Abstract

Currently available small diameter vascular conduits present several long-term limitations, which has prevented their full clinical implementation. Commercially available vascular grafts show no regenerative capabilities and eventually require surgical replacement; therefore, it is of great interest to develop alternative regenerative vascular grafts (RVG). Decellularized Small Intestinal Submucosa (SIS) is an attractive material for RVG, however, the evaluation of the performance of these grafts is challenging due to the absence of devices that mimic the conditions found in vivo. Thereby, the objective of this study is to design, manufacture and validate in silico and in vitro, a novel fluidic system for the evaluation of human umbilical vein endothelial cells (HUVECs) proliferation on SIS-based RVG under dynamical conditions. Our perfusion and rotational fluidic system was designed in Autodesk Inventor 2018. In silico Computational Fluid Dynamics (CFD) validation of the system was carried out using Ansys Fluent software from ANSYS, Inc for dynamical conditions of a pulsatile pressure function measured experimentally over a rigid wall model. Mechanical and biological parameters such as flow regime, pressure gradient, wall shear stress (WSS), sterility and indirect cell viability (MTT assay) were also evaluated. Cell adhesion was confirmed by SEM imaging. The fluid flow regime within the system remains laminar. The system maintained sterility and showed low cytotoxicity levels. HUVECs were successfully cultured on SIS-based RVG under both perfusion and rotation conditions. In silico analysis agreed well with our experimental and theoretical results, and with recent in vitro and in vivo reports for WSS. The system presented is a tool for evaluating RVG and represents an alternative to develop new methods and protocols for a more comprehensive study of regenerative cardiovascular devices.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3