Dynamic Modeling and Attitude–Vibration Cooperative Control for a Large-Scale Flexible Spacecraft

Author:

He Guiqin1,Cao Dengqing1ORCID

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Abstract

Modern spacecraft usually have larger and more flexible appendages whose vibration becomes more and more prominent, and it has a great influence on the precision of spacecraft attitude. Therefore, the cooperative control of attitude maneuvering and structural vibration of the system has become a significant issue in the spacecraft design process. We developed a low-dimensional and high-precision mathematical model for a large-scale flexible spacecraft (LSFS) equipped with a pair of hinged solar arrays in this paper. The analytic global modes are used to obtain the rigid–flexible coupling discrete dynamic model, and the governing equations with multiple DOFs for the system are derived by using the Hamiltonian principle. The rigid–flexible coupled oscillating responses of LSFS under the three-axis attitude-driving torque pulse during the in-orbit attitude maneuvering process are investigated. A study on the flexibility of the hinge was also conducted. Based on the simplified and accurate dynamic model of the system, we can obtain a state-space model for LSFS conveniently, and the cooperative control schemes for rigid motion and flexible oscillation control are designed by using the LQR, PD, and PD + IS algorithms. The simulation results show that three cooperative controllers can realize spacecraft attitude adjustment and synchronously eliminate flexible oscillation successfully. By comparison, the PD + IS controller is simpler so that it is suitable for the real-time attitude–vibration cooperative control of spacecraft.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3