An Optimization-Based High-Precision Flexible Online Trajectory Planner for Forklifts

Author:

Sun Yizhen12ORCID,Yang Junyou1,Zhang Zihan1,Shu Yu1

Affiliation:

1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110020, China

2. Intelligent Robot Laboratory, Shenyang Open University, Shenyang 110020, China

Abstract

There are numerous prospects for automated unmanned forklifts in the fields of intelligent logistics and intelligent factories. However, existing unmanned forklifts often operate according to offline path planning first followed by path tracking to move materials. This process does not meet the needs of flexible production in intelligent logistics. To solve this problem, we proposed an optimized online motion planner based on the output of the state grid as the original path. Constraints such as vehicle kinematics; dynamics; turning restriction at the end of the path; spatial safety envelope; and the position and orientation at the starting point and the ending point were considered during path optimization, generating a precise and smooth trajectory for industrial forklifts that satisfied non-holonomic vehicle constraints. In addition, a new rapid algorithm for calculating the spatial safety envelope was proposed in this article, which can be used for collision avoidance and as a turning-angle constraint term for path smoothing. Finally, a simulation experiment and real-world tray-insertion task experiment were carried out. The experiments showed that the proposal was effective and accurate via online motion planning and the tracking of automated unmanned forklifts in a complicated environment and that the proposal fully satisfied the needs of industrial navigation accuracy.

Funder

Central Government Guides Local Science and Technology Development Funds

Natural Science Foundation of Shenyang City

Liaoning Province Modern Distance Education Institution

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3