Learning-Based Visual Servoing for High-Precision Peg-in-Hole Assembly

Author:

Shen Yue1ORCID,Jia Qingxuan1,Wang Ruiquan1,Huang Zeyuan1ORCID,Chen Gang1

Affiliation:

1. School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Visual servoing is widely used in the peg-in-hole assembly due to the uncertainty of pose. Humans can easily align the peg with the hole according to key visual points/edges. By imitating human behavior, we propose P2HNet, a learning-based neural network that can directly extract desired landmarks for visual servoing. To avoid collecting and annotating a large number of real images for training, we built a virtual assembly scene to generate many synthetic data for transfer learning. A multi-modal peg-in-hole strategy is then introduced to combine image-based search-and-force-based insertion. P2HNet-based visual servoing and spiral search are used to align the peg with the hole from coarse to fine. Force control is then used to complete the insertion. The strategy exploits the flexibility of neural networks and the stability of traditional methods. The effectiveness of the method was experimentally verified in the D-sub connector assembly with sub-millimeter clearance. The results show that the proposed method can achieve a higher success rate and efficiency than the baseline method in the high-precision peg-in-hole assembly.

Funder

Major Project of the New Generation of Artificial Intelligence of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3