Peat-Based Organo-Mineral Fertilizer Improves Nitrogen Use Efficiency, Soil Quality, and Yield of Baby Corn (Zea mays L.)

Author:

Uddin Md. Kafil1,Yeasmin Sanjida1,Mohiuddin K. M.1ORCID,Chowdhury Md. Akhter Hossain1,Saha Biplob Kumar1ORCID

Affiliation:

1. Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

Abstract

The application of organo-mineral fertilizers (OMFs) is gaining popularity day by day because of their potential effect on crop productivity and soil fertility enhancement. Therefore, this research was conducted to observe the effect of a peat soil–urea (PSU) fertilizer on baby corn yield, quality, nitrogen (N) use efficiency, and soil quality compared with commercial urea. A completely randomized design (CRD) with four replicates was used to set up the experiment. In this trial, N was applied from three sources, viz., urea, PSU-L (low N = 15%), and PSU-H (high N = 25%) at a rate of 50, 75, and 100% of the recommended N application dose. The growth, yield, quality, and N use efficiency of baby corn were significantly impacted by the application of PSU fertilizer to the soil. Substantially higher leaf chlorophyll, cob vitamin C, and protein content were found in PSU-treated plants compared with commercial urea. The application of PSU produced about 21% higher cob and a 14% fodder yield over commercial urea. On average, the N uptake by baby corn was 22% higher in PSU-treated plants than urea-treated plants, resulting in 24 and 33% higher N use efficiency and fertilizer N use efficiency, respectively, in PSU than commercial urea. Therefore, the N application rate could be reduced by around 30% using PSU as an alternate N source compared with using commercial urea. In addition, the application of PSU to soil substantially increased the soil organic carbon (SOC) content, whereas SOC decreased in urea-treated soil.

Funder

Bangladesh Agricultural University Research System

B.K.S.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3