OCT Retinal and Choroidal Layer Instance Segmentation Using Mask R-CNN

Author:

Viedma Ignacio A.ORCID,Alonso-Caneiro DavidORCID,Read Scott A.ORCID,Collins Michael J.ORCID

Abstract

Optical coherence tomography (OCT) of the posterior segment of the eye provides high-resolution cross-sectional images that allow visualization of individual layers of the posterior eye tissue (the retina and choroid), facilitating the diagnosis and monitoring of ocular diseases and abnormalities. The manual analysis of retinal OCT images is a time-consuming task; therefore, the development of automatic image analysis methods is important for both research and clinical applications. In recent years, deep learning methods have emerged as an alternative method to perform this segmentation task. A large number of the proposed segmentation methods in the literature focus on the use of encoder–decoder architectures, such as U-Net, while other architectural modalities have not received as much attention. In this study, the application of an instance segmentation method based on region proposal architecture, called the Mask R-CNN, is explored in depth in the context of retinal OCT image segmentation. The importance of adequate hyper-parameter selection is examined, and the performance is compared with commonly used techniques. The Mask R-CNN provides a suitable method for the segmentation of OCT images with low segmentation boundary errors and high Dice coefficients, with segmentation performance comparable with the commonly used U-Net method. The Mask R-CNN has the advantage of a simpler extraction of the boundary positions, especially avoiding the need for a time-consuming graph search method to extract boundaries, which reduces the inference time by 2.5 times compared to U-Net, while segmenting seven retinal layers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3