Fatigue Crack Propagation Estimation Based on Direct Strain Measurement during a Full-Scale Fatigue Test

Author:

Reymer PiotrORCID,Leski AndrzejORCID,Dziendzikowski MichałORCID

Abstract

Military aircraft are subjected to variable loads, which are the main cause of initiation and propagation of cracks in the most stressed locations of the airframe. The aim of a Full-Scale Fatigue Test (FSFT) is to represent actual load conditions in such a way that the results obtained are a good representation of the actual loads and may be used as data that give insight into the development of real fatigue damage in critical locations. The FSFT load spectrum is a generalized depiction of the expected service loads and is designed to give an overall good representation of loads exerted on the airframe’s structural elements during operation. Moreover, the discrete method of load application on the structure (exerting loads with hydraulic actuators rather than pressure fields or inertia loads expected in actual operation) may cause some local effects, which may not be present in operation. The proposed usage of direct strain data from the test include such local effects. Moreover, operational loads may vary between individual aircraft, therefore it is crucial to understand the whole process of fatigue crack onset and development in order to determine safe inspection intervals and thereby mitigate risk. This paper presents crack propagation calculations regarding the development of a crack in a critical location of the PZL-130 “Orlik” TC-II aircraft, discovered during FSFT. The discussed crack was found already developed, hence the information about nucleation and initial propagation of the crack was not available. Therefore, there was a need to recreate the whole propagation process by means of numerical estimations using the FSFT results like location of the crack and total life for model validation. Moreover, in order to gather real load data for calculations a dedicated stain gage was installed on the damaged load path to monitor the actual remote strain in the element during the FSFT. This allowed for the definition of load sequence exerted on the damaged element directly during the test rather than estimating it from the general load conditions of the wing. The calculations allowed for the estimation of crack propagation curves from initiation to critical crack length causing fatal damage. The obtained curves allowed to visualize the crack behavior due to applied load and furthermore define initial and recurring inspection intervals for the entire fleet during operation, which allowed to define which cracks could be found before they reach critical size in order to carry out mitigation actions like repair or replacement of the damaged part. The authors present the methodology for load spectrum development based on direct strain measurements and furthermore crack propagation curves estimation, validated with the actual FSFT results, which allowed to propose nondestructive inspection intervals for future operation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3