Integrating GEDI and Landsat: Spaceborne Lidar and Four Decades of Optical Imagery for the Analysis of Forest Disturbances and Biomass Changes in Italy

Author:

Francini SaverioORCID,D’Amico GiovanniORCID,Vangi EliaORCID,Borghi CostanzaORCID,Chirici GherardoORCID

Abstract

Forests play a prominent role in the battle against climate change, as they absorb a relevant part of human carbon emissions. However, precisely because of climate change, forest disturbances are expected to increase and alter forests’ capacity to absorb carbon. In this context, forest monitoring using all available sources of information is crucial. We combined optical (Landsat) and photonic (GEDI) data to monitor four decades (1985–2019) of disturbances in Italian forests (11 Mha). Landsat data were confirmed as a relevant source of information for forest disturbance mapping, as forest harvestings in Tuscany were predicted with omission errors estimated between 29% (in 2012) and 65% (in 2001). GEDI was assessed using Airborne Laser Scanning (ALS) data available for about 6 Mha of Italian forests. A good correlation (r2 = 0.75) between Above Ground Biomass Density GEDI estimates (AGBD) and canopy height ALS estimates was reported. GEDI data provided complementary information to Landsat. The Landsat mission is capable of mapping disturbances, but not retrieving the three-dimensional structure of forests, while our results indicate that GEDI is capable of capturing forest biomass changes due to disturbances. GEDI acquires useful information not only for biomass trend quantification in disturbance regimes but also for forest disturbance discrimination and characterization, which is crucial to further understanding the effect of climate change on forest ecosystems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3