Development of KOSEN Weather Station and Provision of Weather Information to Farmers

Author:

Kim Jeyeon,Minagawa Daichi,Saito Daiki,Hoshina Shinichiro,Kanda Kazuya

Abstract

In recent years, environmental information monitoring in the agricultural field has become an important issue. There is an increasing demand for meteorological information in local areas such as a rice field, a greenhouse, etc., owned by an agricultural worker. Conventional research has been actively conducted on weather stations in local areas. However, weather stations that are inexpensive, highly accurate, and have achieved stable measurements indoors and outdoors for long periods of time (over a year) are not reported. In addition, there is a lack of research that simultaneously acquires weather information, stores weather information, and provides weather information to farmers. These three functions are important in the agricultural field. In this paper, we discuss the development of a meteorological observation device, the construction of a cloud server for storing meteorological information, and the provision of information to users. First, we develop the novel meteorological observation device (KOSEN-Weather Station), which applies a simple Aßmann’s aspiration psychrometer for highly accurate temperature and humidity measurements. To evaluate the reliability of KOSEN-WS, we compare the weather information measured by KOSEN-WS with that of WXT520. As a result, it is shown that KOSEN-WS is viable. Then, KOSEN-WS is installed in the field, and the stability and durability of KOSEN-WS are examined. As a result, the KOSEN-WS has been operating stably over 19 months and provides weather information to users. Then, it is shown that the KOSEN-WS is able to operate continuously under the environment of −16.5 °C to 44.9 °C. Next, for the storage of meteorological information, we construct the cloud server. Then, a webpage is created to provide easy-to-understand weather information to farmers. Furthermore, to prevent damage to crops, if the current temperature is lower than the set temperature, or if the current temperature is higher than the set temperature, an alert is sent to the farmers. As a result, the system is highly evaluated by agricultural workers and JA staff. From the above results, the effectiveness of this system is shown.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weather Intelligence for Climate-Resilient Agriculture;Advances in Geographical and Environmental Sciences;2024

2. Implementation of a weather station to monitor agricultural crops;International Journal of Advanced Statistics and IT&C for Economics and Life Sciences;2023-12-01

3. Response Time and Intrinsic Information Quality as Criteria for the Selection of Low-Cost Sensors for Use in Mobile Weather Stations;Electronics;2022-08-07

4. IoT-based system for monitoring conditions in an industrial painting booth;2022 33rd Irish Signals and Systems Conference (ISSC);2022-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3