Validation of Embedded State Estimator Modules for Decentralized Monitoring of Power Distribution Systems Using IoT Components

Author:

Junior Rosvando Marques Gonzaga,Márquez-Sánchez SergioORCID,Santos Jorge Herrera,de Almeida Rodrigo Maximiano Antunes,London Junior João Bosco AugustoORCID,Rodríguez Juan Manuel CorchadoORCID

Abstract

Recent theoretical studies demonstrate the advantages of using decentralized architectures over traditional centralized architectures for real-time Power Distribution Systems (PDSs) operation. These advantages include the reduction of the amount of data to be transmitted and processed when performing state estimation in PDSs. The main contribution of this paper is to provide lab validation of the advantages and feasibility of decentralized monitoring of PDSs. Therefore, this paper presents an advanced trial emulating realistic conditions and hardware setup. More specifically, the paper proposes: (i) The laboratory development and implementation of an Advanced Measurement Infrastructure (AMI) prototype to enable the simulation of a smart grid. To emulate the information traffic between smart meters and distribution operation centers, communication modules, that enable the use of wireless networks for sending messages in real-time, are used, bridging concepts from both IoT and Edge Computing. (ii) The laboratory development and implementation of a decentralized architecture based on Embedded State Estimator Modules (ESEMs) are carried out. ESEMs manage information from smart meters at lower voltage networks, performing real-time state estimation in PDSs. Simulations performed on a real PDS with 208 buses (considering both medium and low voltage buses) have met the aims of this paper. The results show that by using ESEMs in a decentralized architecture, both the data transit through the communication network, as well as the computational requirements involved in monitoring PDSs in real-time, are reduced considerably without any loss of accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3