A Novel Driving Noise Analysis Method for On-Road Traffic Detection

Author:

Ma Qinglu,Ma Lian,Liu Fengjie,Sun Daniel (Jian)ORCID

Abstract

Effective noise reduction and abnormal feature extraction are important for abnormal sound detection occurring in urban traffic operations. However, to improve the detection accuracy of continuous traffic flow and even overlapping vehicle bodies, effective methods capable to achieve accurate signal-to-noise ratio and appropriate characteristic parameters should be explored. In view of the disadvantages of traditional traffic detection methods, such as Short-Time Energy (STE) and Mel Frequency Cepstral Coefficients (MFCC), this study adopts an improved spectral subtraction method to analyze traffic noise. Through the feature fusion of STE and MFCC coefficients, an innovative feature parameter, E-MFCC, is obtained, assisting to propose a traffic noise detection solution based on Triangular Wave Analysis (TWA). APP Designer in MATLAB was used to establish a traffic detection simulation platform. The experimental results showed that compared with the accuracies of traffic detection using the traditional STE and MFCC methods as 67.77% and 76.01%, respectively, the detection accuracy of the proposed TWA is significantly improved, attaining 91%. The results demonstrated the effectiveness of the traffic detection method proposed in solving the overlapping problem, thus achieving accurate detection of road traffic volume and improving the efficiency of road operation.

Funder

the National Emergency Management System Construction Research Project of National Social Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Wavelet-Fourier Method for Monaural Vehicle Speed Estimation in Real-Life Settings;IEEE Sensors Journal;2024-05-01

2. Frequency of Interest-based Noise Attenuation Method to Improve Anomaly Detection Performance;2023 IEEE International Conference on Big Data and Smart Computing (BigComp);2023-02

3. Methods of Mobile Measurement, Data Collection and Analysis of Noise Near Highways;2022 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED);2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3