Abstract
In this paper, a novel model predictive control (MPC) method based on the population normal probability division genetic algorithm and ant colony optimization (GA-ACO) method is proposed to optimally solve the problem of standard MPC with constraints that generally cannot yield global optimal solutions when using quadratic programming (QP). Combined with dynamic sliding mode control (SMC), this model is applied to the dynamic trajectory tracking control of autonomous underwater vehicles (AUVs). First, the computational fluid dynamics (CFD) simulation platform ANSYS Fluent is used to solve for the main hydrodynamic coefficients required to establish the AUV dynamic model. Then, the novel model predictive controller is used to obtain the desired velocity command of the AUV. To reduce the influence of external interference and realize accurate velocity tracking, dynamic SMC is used to obtain the control input command. In addition, stability analysis based on the Lyapunov method proves the asymptotic stability of the controller. Finally, the trajectory tracking performance of the AUV in an underwater, three-dimensional environment is verified by using the MATLAB/Simulink simulation platform. The results verify the effectiveness and robustness of the proposed control method.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献