Enhanced Hand Gesture Recognition with Surface Electromyogram and Machine Learning

Author:

Kadavath Mujeeb Rahman Kanhira1ORCID,Nasor Mohamed1,Imran Ahmed1ORCID

Affiliation:

1. College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates

Abstract

This study delves into decoding hand gestures using surface electromyography (EMG) signals collected via a precision Myo-armband sensor, leveraging machine learning algorithms. The research entails rigorous data preprocessing to extract features and labels from raw EMG data. Following partitioning into training and testing sets, four traditional machine learning models are scrutinized for their efficacy in classifying finger movements across seven distinct gestures. The analysis includes meticulous parameter optimization and five-fold cross-validation to evaluate model performance. Among the models assessed, the Random Forest emerges as the top performer, consistently delivering superior precision, recall, and F1-score values across gesture classes, with ROC-AUC scores surpassing 99%. These findings underscore the Random Forest model as the optimal classifier for our EMG dataset, promising significant advancements in healthcare rehabilitation engineering and enhancing human–computer interaction technologies.

Funder

Ajman University

Publisher

MDPI AG

Reference33 articles.

1. Michell, A. (2013). Understanding EMG, OUP.

2. Konrad, P. (2005). A practical introduction to kinesiological electromyography 1. The ABC of EMG, Noraxon Inc.

3. Design and development of EMG controlled prosthetics limb;Sudarsan;Procedia Eng.,2012

4. Combined surface and intramuscular EMG for improved real-time myoelectric control performance;Kamavuako;Biomed. Signal Process. Control,2014

5. A review of EMG recording technique;Ahmad;Int. J. Eng. Sci. Technol.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3