Calibration of a Low-Cost Methane Sensor Using Machine Learning

Author:

Mitchell Hazel Louise1ORCID,Cox Simon J.1,Lewis Hugh G.1ORCID

Affiliation:

1. Computational Engineering and Design Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK

Abstract

In order to combat greenhouse gas emissions, the sources of these emissions must be understood. Environmental monitoring using low-cost wireless devices is one method of measuring emissions in crucial but remote settings, such as peatlands. The Figaro NGM2611-E13 is a low-cost methane detection module based around the TGS2611-E00 sensor. The manufacturer provides sensitivity characteristics for methane concentrations above 300 ppm, but lower concentrations are typical in outdoor settings. This study investigates the potential to calibrate these sensors for lower methane concentrations using machine learning. Models of varying complexity, accounting for temperature and humidity variations, were trained on over 50,000 calibration datapoints, spanning 0–200 ppm methane, 5–30 °C and 40–80% relative humidity. Interaction terms were shown to improve model performance. The final selected model achieved a root-mean-square error of 5.1 ppm and an R2 of 0.997, demonstrating the potential for the NGM2611-E13 sensor to measure methane concentrations below 200 ppm.

Funder

UK Research and Innovation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3