Author:
Zhang ,Liu ,Xiang ,Xu ,Qin ,Yan
Abstract
Based on a multiple layer perceptron neural networks, this paper presents a real-time channel prediction model, which could predict channel parameters such as path loss (PL) and packet drop (PD), for dedicated short-range communications (DSRC). The dataset used for training, validating, and testing was extracted from experiments under several different road scenarios including highways, local areas, residential areas, state parks, and rural areas. The study shows that the proposed PL prediction model outperforms conventional empirical models. Meanwhile, the proposed PD prediction model achieves higher prediction accuracy than the statistical one. Moreover, the prediction model can operate in real-time, through updating its training set, to predict channel parameters. Such a model can be easily extended to the applications of autonomous driving, the Internet of Things (IoT), 5th generation cellular network technology (5G) and many others.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献