Editorial of Special Issue “Drones for Biodiversity Conservation and Ecological Monitoring”

Author:

Díaz-Delgado RicardoORCID,Mücher Sander

Abstract

Unmanned Aerial Vehicles (UAV) have already become an affordable and cost-efficient tool to quickly map a targeted area for many emerging applications in the arena of Ecological Monitoring and Biodiversity Conservation. Managers, owners, companies and scientists are using professional drones equipped with high-resolution visible, multispectral or thermal cameras to assess the state of ecosystems, the effect of disturbances, or the dynamics and changes of biological communities inter alia. It is now a defining time to assess the use of drones for these types of applications over natural areas and protected areas. UAV missions are increasing but most of them are just testing its applicability. It is time now to move to frequent revisiting missions, aiding in the retrieval of important biophysical parameters in ecosystems or mapping species distributions. This Special Issue is aimed at collecting UAV applications contributing to a better understanding of biodiversity and ecosystem status, threats, changes and trends. Submissions were welcomed from purely scientific missions to operational management missions, evidencing the enhancement of knowledge in: Essential biodiversity variables and ecosystem services mapping; ecological integrity parameters mapping; long-term ecological monitoring based on UAVs; mapping of alien species spread and distribution; upscaling ecological variables from drone to satellite images: methods and approaches; rapid risk and disturbance assessment using drones, ecosystem structure and processes assessment by using UAVs, mapping threats, vulnerability and conservation issues of biological communities and species; mapping of phenological and temporal trends and habitat mapping; monitoring and reporting of conservation status.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3