A Rapid UAV Method for Assessing Body Condition in Fur Seals

Author:

Allan Blake M.,Ierodiaconou Daniel,Hoskins Andrew J.,Arnould John P.Y.

Abstract

Condition indices correlating body lipid content with mass and morphometric measurements have been developed for a variety of taxa. However, for many large species, the capture and handling of enough animals to obtain representative population estimates is not logistically feasible. The relatively low cost and reduced disturbance effects of UAVs make them ideal for the rapid acquisition of high volume data for monitoring large species. This study examined the imagery collected from two different UAVs, flown at 25 m altitude, and the subsequent georeferenced orthomosaics as a method for measuring length and axillary girth of Australian fur seals (Arctocephalus pusillus doriferus) to derive an index of body condition. Up to 26% of individuals were orientated correctly (prostrate/sternal recumbent) to allow for body measurements. The UAV-obtained images over-estimated axillary girth diameter due to postural sag on the lateral sides of the thorax while the animals are lying flat in the sternal recumbent position on granite rocks. However, the relationship between axillary girth and standard length was similarly positive for the remotely- and physically-obtained measurements. This indicates that residual values from the remotely-obtained measurements can be used as a relative index of body condition.

Funder

Parks Victoria

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3