Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds

Author:

Anders NielsORCID,Valente JoãoORCID,Masselink Rens,Keesstra SaskiaORCID

Abstract

Digital Elevation Models (DEMs) are 3D representations of the Earth’s surface and have numerous applications in geomorphology, hydrology and ecology. Structure-from-Motion (SfM) photogrammetry using photographs obtained by unmanned aerial vehicles (UAVs) have been increasingly used for obtaining high resolution DEMs. These DEMs are interpolated from point clouds representing entire landscapes, including points of terrain, vegetation and infrastructure. Up to date, there has not been any study clearly comparing different algorithms for filtering of vegetation. The objective in this study was, therefore, to assess the performance of various vegetation filter algorithms for SfM-obtained point clouds. The comparison was done for a Mediterranean area in Murcia, Spain with heterogeneous vegetation cover. The filter methods that were compared were: color-based filtering using an excessive greenness vegetation index (VI), Triangulated Irregular Networks (TIN) densification from LAStools, the standard method in Agisoft Photoscan (PS), iterative surface lowering (ISL), and a combination of iterative surface lowering and the VI method (ISL_VI). Results showed that for bare areas there was little to no difference between the filtering methods, which is to be expected because there is little to no vegetation present to filter. For areas with shrubs and trees, the ISL_VI and TIN method performed best. These results show that different filtering techniques have various degrees of success in different use cases. A default filter in commercial software such as Photoscan may not always be the best way to remove unwanted vegetation from a point cloud, but instead alternative methods such as a TIN densification algorithm should be used to obtain a vegetation-less Digital Terrain Model (DTM).

Funder

Interreg

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3