Lattice Distortion, Amorphization and Wear Resistance of Carbon-Doped SUS304 by Laser Ablation

Author:

Kim Seonghoon,Kim Taewoo,Hong Eunpyo,Lee Heesoo

Abstract

Lattice distortion and amorphization of carbon-doped SUS304 by variation of the laser output were investigated in terms of phase formation and the bonding state. The laser output was changed by 10% in the range of 60% to 100% after covering the SUS304 with carbon paste. A graphite peak and expanded austenite (S-phase) peak were observed in the carbon-doped SUS304, and Rietveld refinement was performed to identify the lattice distortion. The lattice constant of SUS304 was initially 3.612 Å, but expansion lattice distortion occurred in the carbon-doped SUS304 as a result of the S phase formation and carbon doping, and the lattice constant increased to 3.964 Å (100% laser output). X-ray photoelectron spectroscopy analysis for the bonding state of the carbon-doped SUS304 showed that the sp2/sp3 ratio decreased from 3.21 (70% laser output) to 2.52 (100% laser output). The residual stress in the lattice was accumulated due to carbon doping by high thermal energy, which resulted in the formation of amorphous carbon. The bonding environment was represented by the ID/IG ratio using Raman analysis, and it increased from 0.55 (70% laser output) to 1.68 (100% laser output). During microstructure analysis of the carbon-doped SUS304, disordered structures by amorphization were observed in the carbon-doped SUS304 by the greater than 90% laser output. The amorphous carbon filled the lattice grains or voids to lubricate the surface, which improved the friction coefficient and wear rate from 0.23 and 7.63 mm3(Nm)−110−6 to 0.09 and 1.43 mm3(Nm)−110−6, respectively.

Funder

Ministry of Trade, Industry and Energy

Korea Institute for Advancement of Technology

Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science

Reference33 articles.

1. Effect of magnetic field on isothermal martensitic transformation in a sensitized SUS304 austenitic stainless steel

2. Metastable Austenites in Cryogenic High Magnetic Field Environments

3. Effect of additive alloying element on plasma nitriding and carburizing behavior for austenitic stainless steels

4. Stainless steel low temperature nitriding and carburizing: Low-temperature nitriding and carburizing of austenitic stainless steels have been developed and are rapidly gaining acceptance for improving resistance to wear and corrosion;Bell;Adv. Mater. Process.,2002

5. Microstructure of Low-Temperature Gas-Carbonitrided Layers on Austenitic Stainless Steel

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3