Change of the Structural Properties of High-Performance Concretes Subjected to Thermal Effects

Author:

Kaczmarczyk Grzegorz PiotrORCID,Wałach DanielORCID,Natividade-Jesus EduardoORCID,Ferreira Rui

Abstract

The paper refers to studies of the structure of high-performance concrete with polypropylene fibre at different dosages. The authors see a research gap in the study of the effect of adding polypropylene fibre on the parameters of concrete exposed to high temperatures. The study takes into account the thermal effect—groups of samples were heated to 200 °C, 400 °C and 600 °C. The authors carried out basic tests to describe the changes in density, ultrasonic tests, uniaxial compression strength tests and tensile tests by splitting. The positive effect of polypropylene fibres is mainly observed between 20 °C and 200 °C. The melting of polypropylene fibres causes a delay in the development of micro-cracks in the structure of these concretes compared to HPC. Adding polypropylene fibres to the mixtures also increased the speed of ultrasonic wave propagation in the medium. The research was deepened with tomographic imaging. A description of the splitting surface was carried out. The results of tensile by splitting tests clearly show an increase in the relative failure area for unheated concretes in proportion to the number of fibres used. Changes in splitting surfaces under the influence of temperature are graphically illustrated. Furthermore, differences in the samples under the influence of heating at high temperatures are presented. Finally, the porosity development of all sample groups before and after heating at all temperatures is described.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3