Damage Evolution Characteristics of Back-Filling Concrete in Gob-Side Entry Retaining Subjected to Cyclical Loading

Author:

Gao XicaiORCID,Liu Shuai,Zhao Cheng,Yin Jianhui,Fan Kai

Abstract

The back-filling body in the gob-side entry retaining is subject to continuous disturbance due to repeated mining. In this study, uniaxial and cyclical loading tests of back-filling concrete samples were carried out under laboratory conditions to study damage evolution characteristics with respect to microscopic hydration, deformation properties, and energy evolution. The results showed that, due to the difference in the gradation of coarse and fine aggregates, the cemented structure was relatively loose, and the primary failure modes under cyclical loading were tensile and shearing failure, which significantly decreased its strength. With an increasing number of loadings, a hysteresis loop appeared for the axial strain, and the area showed a pattern of decrease–stabilization–increase. This trend, to a certain extent, reflected the evolution of the cracks in the back-filling concrete samples. The axial, radial, and volumetric plastic strain curves of the back-filling concrete samples showed a “U” shape. The plastic strain changed in three stages, i.e., a rapid decrease, stabilization, and a rapid increase. A damage parameter was defined according to the plastic strain increment to accurately characterize the staged failure of the samples. The plastic strain and energy dissipation of the samples were precursors to sample failure. Prior to the failure of the back-filling samples, the amount and speed of change of both the plastic strain and energy parameters increased significantly. Understanding the characteristics of plastic strain, damage evolution, and energy dissipation rate of the back-filling samples are of great reference value for realizing real-time monitoring of back-filling concrete in the gob-side entry retaining and providing early warning of failure.

Funder

the Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3