Abstract
A mixed-valence manganese selenite, Mn3O(SeO3)3, was successfully synthesized using a conventional hydrothermal method. The three-dimensional framework of this compound is composed of an MnO6 octahedra and an SeO3 trigonal pyramid. The magnetic topological arrangement of manganese ions shows a three-dimensional framework formed by the intersection of octa-kagomé spin sublattices and staircase-kagomé spin sublattices. Susceptibility, magnetization and heat capacity measurements confirm that Mn3O(SeO3)3 exhibits two successive long-range antiferromagnetic orderings with TN1~4.5 K and TN2~45 K and a field-induced spin–flop transition at a critical field of 4.5 T at low temperature.
Subject
General Materials Science