Encapsulation of a Neutral Molecule into a Cationic Clay Material: Structural Insight and Cytotoxicity of Resveratrol/Layered Double Hydroxide/BSA Nanocomposites

Author:

Minnelli CristinaORCID,Laudadio Emiliano,Galeazzi RobertaORCID,Barucca GianniORCID,Notarstefano Valentina,Cantarini Mattia,Armeni Tatiana,Mobbili GiovannaORCID

Abstract

Resveratrol (RES) is a stilbenoid polyphenol with interesting antitumor activity compromised by its poor solubility and bioavailability; thus, new approaches are necessary to improve its therapeutic effectiveness. In the present study, bovine serum albumin coated layered double hydroxide (LDH–BSA) was employed to encapsulate RES in order to overcome the above-mentioned usage limits. To evaluate the feasibility of neutral RES complexation with cationic LDH, we carried out molecular dynamics simulation in order to predict its structure and stability. In the supramolecular complex formed with LDH, RES disposes itself in the interlamellar region of LDH where it is stabilized by intermolecular interactions. The physico-chemical characteristics of the resulting nanocomplexes were studied by X-ray powder diffraction, transmission electron microscopy, and attenuated total reflection Fourier transform infrared spectroscopy. The encapsulation efficiency and drug release studies were also performed. The combined experimental and computational approach were highly effective in giving insight into the interaction mode of the neutral RES with the charged LDH. Finally, the nanohybrid’s anticancer ability was evaluated in human lung cancer cell line (A549) resulting in higher activity with respect to bare RES. Overall, the results showed that the nanocomposites are suitable for biomedical applications as delivery agents of RES.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3