Visible Light Photodegradation of Formaldehyde over TiO2 Nanotubes Synthesized via Electrochemical Anodization of Titanium Foil

Author:

Sahrin Nurul TasnimORCID,Nawaz Rab,Fai Kait ChongORCID,Lee Siew Ling,Wirzal Mohd Dzul HakimORCID

Abstract

In this study, a series of TiO2 nanotubes (NTs) were synthesized employing electrochemical anodization of titanium foil in an ionic liquid solution containing a mixture of glycerol and choline chloride, acting as electrolyte. The as-synthesized TiO2 NTs were calcined at 350, 450, or 550 °C for a 2 h duration to investigate the influence of calcination temperature on NTs formation, morphology, surface properties, crystallinity, and subsequent photocatalytic activity for visible light photodegradation of gaseous formaldehyde (HCHO). Results showed that the calcination temperature has a significant effect on the structure and coverage of TiO2 NTs on the surface. Freshly synthesized TiO2 NTs showed better-ordered structure compared to calcined samples. There was significant pore rupture with increasing calcination temperature. The transformation from anatase to rutile phase appeared after calcination at 450 °C and the weight fraction of the rutile phase increased from 19% to 36% upon increasing the calcination temperature to 550 °C. The band gaps of the TiO2 NTs were in the range from 2.80 to 2.74 eV, shifting the active region of the materials to visible light. The presence of mixed anatase–rutile TiO2 phases in the sample calcined at 450 °C showed enhanced photoactivity, which was confirmed by the 21.56 mg∙L−1∙g−1 removal of gaseous formaldehyde under 120 min of visible light irradiation and displayed enhanced quantum yield, ∅HCHO of 17%.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3