Practices and Trends of Machine Learning Application in Nanotoxicology

Author:

Furxhi IriniORCID,Murphy Finbarr,Mullins Martin,Arvanitis Athanasios,Poland Craig A.

Abstract

Machine Learning (ML) techniques have been applied in the field of nanotoxicology with very encouraging results. Adverse effects of nanoforms are affected by multiple features described by theoretical descriptors, nano-specific measured properties, and experimental conditions. ML has been proven very helpful in this field in order to gain an insight into features effecting toxicity, predicting possible adverse effects as part of proactive risk analysis, and informing safe design. At this juncture, it is important to document and categorize the work that has been carried out. This study investigates and bookmarks ML methodologies used to predict nano (eco)-toxicological outcomes in nanotoxicology during the last decade. It provides a review of the sequenced steps involved in implementing an ML model, from data pre-processing, to model implementation, model validation, and applicability domain. The review gathers and presents the step-wise information on techniques and procedures of existing models that can be used readily to assemble new nanotoxicological in silico studies and accelerates the regulation of in silico tools in nanotoxicology. ML applications in nanotoxicology comprise an active and diverse collection of ongoing efforts, although it is still in their early steps toward a scientific accord, subsequent guidelines, and regulation adoption. This study is an important bookend to a decade of ML applications to nanotoxicology and serves as a useful guide to further in silico applications.

Funder

Horizon 2020

Colt Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3