Hybrid ZnO Electron Transport Layer by Down Conversion Complexes for Dual Improvements of Photovoltaic and Stable Performances in Polymer Solar Cells

Author:

Bu Fanchen,Shen Wenfei,Zhang Xiaolin,Wang Yao,Belfiore Laurence A.,Tang Jianguo

Abstract

Polymer solar cells (PSCs) have shown excellent photovoltaic performance, however, extending the spectral response range to the ultraviolet (UV) region and enhancing the UV light stability remain two challenges to overcome in the development of PSCs. Lanthanide down-conversion materials can absorb the UV light and re-emit it at the visible region that matches well with the absorption of the active layer material PTB7-Th (poly[[2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene][3-fluoro-2[(2-ethylhexyl)carbony]thieno[3,4-b]thiophenediyl]]) and PBDB-T-2F, thus helping to enhance the photovoltaic performance and UV light stability of PSCs. In this research, a down-conversion material Eu(TTA)3phen (ETP) is introduced into the cathode transport layer (ZnO) in PSCs to manipulate its nanostructure morphology for its application in hyperfine structure of PSCs. The device based on the ZnO/ETP electron transport layer can obtain power conversion efficiencies (PCEs) of 9.22% (PTB7-Th–PC71BM ([6,6]-phenylC71-butyric acid methyl ester) device) and 13.12% (PBDB-T-2F–IT-4F device), respectively. Besides, in the research on PTB7-Th-PC71BM device, the stability of the device based on ZnO/ETP layer is prolonged by 70% compared with the ZnO device. The results suggest that the ZnO/ETP layer plays the role of enhanced photovoltaic performance and prolonged device stability, as well as reducing photo-loss and UV degradation for PSCs.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3