Author:
Zou Sibei,Zhang Mingyuan,Mo Shengpeng,Cheng Hairong,Fu Mingli,Chen Peirong,Chen Limin,Shi Wei,Ye Daiqi
Abstract
Herein, to investigate the pore effect on toluene catalytic oxidation activity, novel supports for Pt nanoparticles—ZSM-5 foam (ZF) fabricated using polyurethane foam (PUF) templates and pore-modified ZSM-5 foam (ZF-D) treated by acid etching, comparing with conventional ZSM-5 and pore-modified ZSM-5 (ZSM-5-D), were successfully synthesized. Pt nanoparticles were loaded on series ZSM-5 supports by the impregnation method. The Pt loaded on ZF-D (Pt/ZF-D) showed the highest activity of toluene catalytic combustion (i.e., T90 = 158 °C), with extraordinary stability and an anti-coking ability. Based on various catalysts characterizations, the unique macropores of ZF facilitated the process of acid etching as compared to conventional ZSM-5. The mesopores volume of ZF-D significantly increased due to acid etching, which enlarged toluene adsorption capacity and led to a better Pt distribution since some Pt nanoparticles were immobilized into some mesopores. Specifically, the microporous distribution was centered in the range of 0.7–0.8 nm close to the molecular diameter of toluene (ca. 0.67 nm), which was key to the increasing toluene diffusion rate due to pore levitation effect of catalysts and accessibility of metal. Furthermore, the reducibility of Pt nanoparticles was improved on Pt/ZF-D, which enhanced the activity of toluene catalytic oxidation.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Science and Technology Program of Guangdong
Natural Science Foundation of Guangdong Province
Subject
General Materials Science,General Chemical Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献