In Situ Construction of CNT/CuS Hybrids and Their Application in Photodegradation for Removing Organic Dyes

Author:

Wang Yanping,Jiang Fuchuan,Chen Jiafu,Sun Xiaofeng,Xian Tao,Yang HuaORCID

Abstract

Herein, a coprecipitation method used to synthesize CuS nanostructures is reported. By varying the reaction time and temperature, the evolution of the CuS morphology between nanoparticles and nanoflakes was investigated. It was found that CuS easily crystallizes into sphere-/ellipsoid-like nanoparticles within a short reaction time (0.5 h) or at a high reaction temperature (120 °C), whereas CuS nanoflakes are readily formed at a low reaction temperature (20 °C) for a long time (12 h). Photodegradation experiments demonstrate that CuS nanoflakes exhibit a higher photodegradation performance than CuS nanoparticles for removing rhodamine B (RhB) from aqueous solution under simulated sunlight irradiation. Carbon nanotubes (CNTs) were further used to modify the photodegradation performance of a CuS photocatalyst. To achieve this aim, CNTs and CuS were integrated to form CNT/CuS hybrid composites via an in situ coprecipitation method. In the in situ constructed CNT/CuS composites, CuS is preferably formed as nanoparticles, but cannot be crystallized into nanoflakes. Compared to bare CuS, the CNT/CuS composites manifest an obviously enhanced photodegradation of RhB; notably, the 3% CNT/CuS composite with CNT content of 3% showed the highest photodegradation performance (η = 89.4% for 120 min reaction, kapp = 0.01782 min−1). To make a comparison, CuS nanoflakes and CNTs were mechanically mixed in absolute alcohol and then dried to obtain the 3% CNT/CuS-MD composite. It was observed that the 3% CNT/CuS-MD composite exhibited a slightly higher photodegradation performance (η = 92.4%, kapp = 0.0208 min−1) than the 3% CNT/CuS composite, which may be attributed to the fact that CuS maintains the morphology of nanoflakes in the 3% CNT/CuS-MD composite. The underlying enhanced photocatalytic mechanism of the CNT/CuS composites was systematically investigated and discussed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3