Abstract
Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence emitters (TADF) in simple device structures fabricated by solution processing are strongly dependent on a suitable host molecular conformation and morphology. Herein, we report the fabrication of highly efficient yellow-red TADF-based OLEDs via solution processing in a simple, two-organic-layer device structure. The devices were fabricated at different weight concentrations of 5%, 8%, and 10% emitter in an n-/p-type mixed host matrix, and their characteristics were studied. The device performance was compared with different thickness parameters for both the emitting layer (EML) and the electron transport layer (ETL) in various solvents, including chlorobenzene, dichlorobenzene, and chloroform. By optimizing the mixed ratio of EML, yellow-red OLEDs of 2-[4 (diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one (TXO-TPA) emitter in an n-/p-type host matrix of poly(N-vinylcarbazole):1,3-Bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene (PVK:OXD-7) as a blend for the active layer were fabricated. In the best results, the device exhibited a lower turn-on voltage at around 6 V, with an external quantum efficiency (EQE) of 18.44%, current efficiency of 36.71 cd/A, and power efficiency of 14.74 Lm/W for the 8% emitter concentration. The importance of solvent for improving the electrical properties, together with organic layer thickness and host effect for the charge carrier’s transport and device characteristics are also discussed.
Funder
H2020 European Research Council
Subject
General Materials Science,General Chemical Engineering
Reference55 articles.
1. Highly Efficient OLEDs with Phosphorescent Materials;Yersin,2008
2. Organic Electronics: Materials, Processing, Devices and Applications;So,2009
3. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes;Gaspar,2015
4. Recent Progress in Phosphorescent Organic Light-Emitting Devices
5. Recent advances in organic thermally activated delayed fluorescence materials
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献