Impact of Piping Erosion Process on the Temporal–Spatial Mechanisms of Soil

Author:

Xiao Qiong

Abstract

Earthen dams with greater fines are more susceptible to failure from the piping. This study employed the coupled computational fluid dynamics (CFD)-discrete element method (DEM) to investigate the impact of the piping erosion process. Results displayed that increasing the fine contents would reduce the particle velocity and drag force for enhancing the erosion resistance. Piping would reduce the stability of the structure at different positions of the sample with various fine contents. The representative volume elements (RVE) were selected to observe the local geometry and material behavior as the erosion progressed. Severe water flows significantly reduced the peak shear strength of the eroded soils for the interactive-underfilled soil, particularly for the downstream side. However, the interactive-overfilled specimen reduced the peak shear strength on the upstream side. Results indicated that the proposed weighted clustering coefficient is a better index to capture the shear strength of the eroded soil matrix, with a high magnitude corresponding to a high peak shear strength. Different local material behavior may lead to differential settlements and associated catastrophic consequences during the piping erosion process, which should draw special attention.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference42 articles.

1. Effects of the Erosion and Transport of Fine Particles due to Seepage Flow

2. The statistics of embankment dam failures and accidents

3. Der Grundbruch an Stauwerken und seine Verhutung;Terzaghi,1960

4. Theoretical Soil Mechanics;Terzaghi,1943

5. Internal stability of granular filters

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3