Gallic Acid Enhances the Efficacy of BCR::ABL1 Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia through Inhibition of Mitochondrial Respiration and Modulation of Oncogenic Signaling Pathways

Author:

Xiang Wei1,Sng Colin1ORCID,Lam Yi-Hui1,Kok Ze-Hui1,Linn Yeh-Ching1,Neo Soek-Ying2,Siew Yin-Yin2ORCID,Singh Deepika2,Koh Hwee-Ling2ORCID,Chuah Charles13

Affiliation:

1. Department of Haematology, Singapore General Hospital, National Cancer Centre Singapore, Singapore 169608, Singapore

2. Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore

3. Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore

Abstract

While BCR::ABL1 tyrosine kinase inhibitors have transformed the treatment paradigm for chronic myeloid leukemia (CML), disease progression and treatment resistance due to BCR::ABL1-dependent and BCR::ABL1-independent mechanisms remain a therapeutic challenge. Natural compounds derived from plants have significantly contributed to cancer pharmacotherapy. This study investigated the efficacy of an active component of Leea indica, a local medicinal plant, in CML. Using high-performance liquid chromatography–electrospray ionization–mass spectrometry, a chemical constituent from L. indica extract was isolated and identified as gallic acid. Commercially obtained gallic acid was used as a chemical standard. Gallic acid from L. indica inhibited proliferation and induced apoptosis in CML cell lines, as did the chemical standard. Furthermore, gallic acid induced apoptosis and decreased the colony formation of primary CML CD34+ cells. The combination of isolated gallic acid or its chemical standard with BCR::ABL1 tyrosine kinase inhibitors resulted in a significantly greater inhibition of colony formation and cell growth compared to a single drug alone. Mechanistically, CML cells treated with gallic acid exhibited the disruption of multiple oncogenic pathways including ERK/MAPK, FLT3 and JAK/STAT, as well as impaired mitochondrial respiration. Rescue studies showed that gallic acid is significantly less effective in inducing apoptosis in mitochondrial respiration-deficient ρ0 cells compared to wildtype cells, suggesting that the action of gallic acid is largely through the inhibition of mitochondrial respiration. Our findings highlight the therapeutic potential of L. indica in CML and suggest that gallic acid may be a promising lead chemical constituent for further development for CML treatment.

Funder

National University of Singapore-Leeward Pacific Pte Ltd. research collaboration

SGH Research Grant

Academia Medical Research Grant

NMRC Centre Grant Programme-Targeted Therapy for Blood Cancer

National University of Singapore Provost Industrial PhD Programme Research Scholarship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3