Vascular Endothelial Growth Factor C (VEGF-C) Sensitizes Lymphatic Endothelial Cells to Oxidative-Stress-Induced Apoptosis through DNA Damage and Mitochondrial Dysfunction: Implications for Lymphedema

Author:

Hossain Lazina1,Gomes Karina Pereira1ORCID,Yang Xiaoyan1,Liu Emily1,Du Toit Jacques1,von der Weid Pierre-Yves2,Gibson Spencer Bruce12

Affiliation:

1. Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada

2. Department of Physiology & Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T6G 2R3, Canada

Abstract

Secondary lymphedema is caused by damage to the lymphatic system from surgery, cancer treatment, infection, trauma, or obesity. This damage induces stresses such as oxidative stress and hypoxia in lymphatic tissue, impairing the lymphatic system. In response to damage, vascular endothelial growth factor C (VEGF-C) levels increase to induce lymphangiogenesis. Unfortunately, VEGF-C often fails to repair the lymphatic damage in lymphedema. The underlying mechanism contributing to lymphedema is not well understood. In this study, we found that surgery-induced tail lymphedema in a mouse model increased oxidative damage and cell death over 16 days. This corresponded with increased VEGF-C levels in mouse tail lymphedema tissue associated with macrophage infiltration. Similarly, in the plasma of patients with secondary lymphedema, we found a positive correlation between VEGF-C levels and redox imbalance. To determine the effect of oxidative stress in the presence or absence of VEGF-C, we found that hydrogen peroxide (H2O2) induced cell death in human dermal lymphatic endothelial cells (HDLECs), which was potentiated by VEGF-C. The cell death induced by VEGF-C and H2O2 in HDLECs was accompanied by increased reactive oxygen species (ROS) levels and a loss of mitochondrial membrane potential. Antioxidant pre-treatment rescued HDLECs from VEGF-C-induced cell death and decreased ROS under oxidative stress. As expected, VEGF-C increased the number of viable and proliferating HDLECs. However, upon H2O2 treatment, VEGF-C failed to increase either viable or proliferating cells. Since oxidative stress leads to DNA damage, we also determined whether VEGF-C treatment induces DNA damage in HDLECs undergoing oxidative stress. Indeed, DNA damage, detected in the form of gamma H2AX (γH2AX), was increased by VEGF-C under oxidative stress. The potentiation of oxidative stress damage induced by VEFG-C in HDLECs was associated with p53 activation. Finally, the inhibition of vascular endothelial growth factor receptor-3 (VEGFR-3) activation blocked VEGF-C-induced cell death following H2O2 treatment. These results indicate that VEGF-C further sensitizes lymphatic endothelial cells to oxidative stress by increasing ROS and DNA damage, potentially compromising lymphangiogenesis.

Funder

University Hospital Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3