The Structure–Antiproliferative Activity Relationship of Pyridine Derivatives
-
Published:2024-07-11
Issue:14
Volume:25
Page:7640
-
ISSN:1422-0067
-
Container-title:International Journal of Molecular Sciences
-
language:en
-
Short-container-title:IJMS
Author:
Villa-Reyna Ana-Laura1ORCID, Perez-Velazquez Martin2, González-Félix Mayra Lizett2, Gálvez-Ruiz Juan-Carlos3ORCID, Gonzalez-Mosquera Dulce María4, Valencia Dora1ORCID, Ballesteros-Monreal Manuel G.1ORCID, Aguilar-Martínez Milagros1, Leyva-Peralta Mario-Alberto1ORCID
Affiliation:
1. Departamento de Ciencias Químico Biológicas y Agropecuarias, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Caborca, Caborca 83600, Mexico 2. Departamento de Investigaciones Científicas y Tecnológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico 3. Departamento de Ciencias Químico Biológicas, Facultad Interdisiplinaria de Ciencias Biológicas y de Salud, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Mexico 4. Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central Marta Abreu Las Villitas, Santa Clara 54830, Cuba
Abstract
Pyridine, a compound with a heterocyclic structure, is a key player in medicinal chemistry and drug design. It is widely used as a framework for the design of biologically active molecules and is the second most common heterocycle in FDA-approved drugs. Pyridine is known for its diverse biological activity, including antituberculosis, antitumor, anticoagulant, antiviral, antimalarial, antileishmania, anti-inflammatory, anti-Alzheimer’s, antitrypanosomal, antimalarial, vasodilatory, antioxidant, antimicrobial, and antiproliferative effects. This review, spanning from 2022 to 2012, involved the meticulous identification of pyridine derivatives with antiproliferative activity, as indicated by their minimum inhibitory concentration values (IC50) against various cancerous cell lines. The aim was to determine the most favorable structural characteristics for their antiproliferative activity. Using computer programs, we constructed and calculated the molecular descriptors and analyzed the electrostatic potential maps of the selected pyridine derivatives. The study found that the presence and positions of the -OMe, -OH, -C=O, and NH2 groups in the pyridine derivatives enhanced their antiproliferative activity over the cancerous cellular lines studied. Conversely, pyridine derivatives with halogen atoms or bulky groups in their structures exhibited lower antiproliferative activity.
Reference84 articles.
1. Liew, S., Malagobadan, S., Arshad, N., and Nagoor, N. (2020). A review of the structure-activity relationship of natural and synthetic antimestatic compounds. Biomolecules, 10. 2. Laiolo, J., Lanza, P., Parravicini, O., Barbieri, C., Insuasty, D., Cobo, J., Vera, M., Enriz, R., and Carpinella, M. (2021). Structure-activity relationship and the binding mode of quinolinone-pyrimidine hybrids as reversal agents of multidrug resistance medisted by P-gp. Sci. Rep., 27. 3. Bhat, A., Singh, I., Tandon, N., and Tandon, R. (2023). Structure-activity relationship (SAR) and anticancer activity of pyrrolide derivatives: Recent developments and future prospects (a review). Eur. J. Med. Chem., 249. 4. Breast cancer as photodynamic therapy target: Enhaced therapeutic efficiency by overview of tumor complexity;Lamberti;Word J. Clin. Oncol.,2014 5. Immunological aspects of cancer chemotherapy;Zitvoge;Nat. Rev. Immunol.,2008
|
|