Chromosome-Scale Genome Assembly of the Sheep-Biting Louse Bovicola ovis Using Nanopore Sequencing Data and Pore-C Analysis

Author:

Ong Chian Teng1ORCID,Mody Karishma T.1ORCID,Cavallaro Antonino S.1ORCID,Yan Yakun1ORCID,Nguyen Loan T.1ORCID,Shao Renfu23,Mitter Neena1ORCID,Mahony Timothy J.1ORCID,Ross Elizabeth M.1ORCID

Affiliation:

1. Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia

2. Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia

3. School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia

Abstract

Bovicola ovis, commonly known as the sheep-biting louse, is an ectoparasite that adversely affects the sheep industry. Sheep louse infestation lowers the quality of products, including wool and leather, causing a loss of approximately AUD 123M per annum in Australia alone. The lack of a high-quality genome assembly for the sheep-biting louse, as well as any closely related livestock lice, has hindered the development of louse research and management control tools. In this study, we present the assembly of B. ovis with a genome size of ~123 Mbp based on a nanopore long-read sequencing library and Illumina RNA sequencing, complemented with a chromosome-level scaffolding using the Pore-C multiway chromatin contact dataset. Combining multiple alignment and gene prediction tools, a comprehensive annotation on the assembled B. ovis genome was conducted and recalled 11,810 genes as well as other genomic features including orf, ssr, rRNA and tRNA. A manual curation using alignment with the available closely related louse species, Pediculus humanus, increased the number of annotated genes to 16,024. Overall, this study reported critical genetic resources and biological insights for the advancement of sheep louse research and the development of sustainable control strategies in the sheep industry.

Funder

Advance Queensland Industry Research Fellowship

UQ Research Support Package: Strategic Research Investment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3