Abstract
In recent years, new metaheuristic algorithms have been developed taking as reference the inspiration on biological and natural phenomena. This nature-inspired approach for algorithm development has been widely used by many researchers in solving optimization problems. These algorithms have been compared with the traditional ones and have demonstrated to be superior in many complex problems. This paper attempts to describe the algorithms based on nature, which are used in optimizing fuzzy clustering in real-world applications. We briefly describe the optimization methods, the most cited ones, nature-inspired algorithms that have been published in recent years, authors, networks and relationship of the works, etc. We believe the paper can serve as a basis for analysis of the new area of nature and bio-inspired optimization of fuzzy clustering.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献