Optimizing Painting Sequence Scheduling Based on Adaptive Partheno-Genetic Algorithm

Author:

Yang Jun,Sun Tong,Huang Xiuxiang,Peng Ke,Chen ZhongxiangORCID,Qian Guoguang,Qian Zekai

Abstract

In this paper, we formulate and solve a novel real-life large-scale automotive parts paint shop scheduling problem, which contains color arrangement restrictions, part arrangement restrictions, bracket restrictions, and multi-objectives. Based on these restrictions, we construct exact constraints and two objective functions to form a large-scale multi-objective mixed-integer linear programming problem. To reduce this scheduling problem’s complexity, we converted the multi-objective model into a multi-level objective programming problem by combining the rule-based scheduling algorithm and the adaptive Partheno-Genetic algorithm. The rule-based scheduling algorithm is adopted to optimize color changes horizontally and bracket replacements vertically. The adaptive Partheno-Genetic algorithm is designed to optimize production based on the rule-based scheduling algorithm. Finally, we apply the model to the actual optimization problem that contained 829,684 variables and 137,319 constraints, and solved this problem by Python. The proposed method solves the optimal solution, consuming 575 s.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3