Optimal Travel Route Recommendation Mechanism Based on Neural Networks and Particle Swarm Optimization for Efficient Tourism Using Tourist Vehicular Data

Author:

Malik ,Kim

Abstract

With the swift growth in tourism all around the world, it has become vital to introduce advancements and improvements to the services provided to the tourists, in order to ensure their ease of travel and satisfaction. Optimal travel route identification and recommendation is one of these amenities, which requires our attention as a basic and much-needed facility to improve the experience of travelers. In this work, we propose an optimal route recommendation mechanism for the prediction of the next tourist attraction and optimal route recommendation to the predicted tourist attraction. The algorithms used in the proposed methodology are neural networks for prediction and particle swarm optimization for finding the optimal route. We design an objective function for the route optimization based on the five route parameters of distance, road congestion, weather conditions, route popularity, and user preference. The data used is the tourism data of Jeju Island from December 2016 to December 2017. The performance analysis in the prediction mechanism is performed based on the accuracy of test data results with varying route sizes, while for route optimization, the obtained results are compared with the non-optimized technique. Also, comparisons analysis is performed by comparing the performance of the applied particle swarm optimization algorithm with an identical system-level implementation of the genetic algorithm, which is one of most widely used optimization algorithms. An extended comparative analysis with some related recommendation system studies is also performed based on key optimization factors in route optimization.

Funder

Institute for Information and communications Technology Promotion

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference58 articles.

1. https://www.wttc.org/economic-impact/

2. HEV charge/discharge control system based on navigation information;Deguchi,2004

3. A system for destination and future route prediction based on trajectory mining

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3