Modeling the Impact of Climate Change and Land Use Change Scenarios on Soil Erosion at the Minab Dam Watershed

Author:

Azimi Sardari Mohammad Reza,Bazrafshan Ommolbanin,Panagopoulos ThomasORCID,Sardooi Elham Rafiei

Abstract

Climate and land use change can influence susceptibility to erosion and consequently land degradation. The aim of this study was to investigate in the baseline and a future period, the land use and climate change effects on soil erosion at an important dam watershed occupying a strategic position on the narrow Strait of Hormuz. The future climate change at the study area was inferred using statistical downscaling and validated by the Canadian earth system model (CanESM2). The future land use change was also simulated using the Markov chain and artificial neural network, and the Revised Universal Soil Loss Equation was adopted to estimate soil loss under climate and land use change scenarios. Results show that rainfall erosivity (R factor) will increase under all Representative Concentration Pathway (RCP) scenarios. The highest amount of R was 40.6 MJ mm ha−1 h−1y−1 in 2030 under RPC 2.6. Future land use/land cover showed rangelands turning into agricultural lands, vegetation cover degradation and an increased soil cover among others. The change of C and R factors represented most of the increase of soil erosion and sediment production in the study area during the future period. The highest erosion during the future period was predicted to reach 14.5 t ha−1 y−1, which will generate 5.52 t ha−1 y−1 sediment. The difference between estimated and observed sediment was 1.42 t ha−1 year−1 at the baseline period. Among the soil erosion factors, soil cover (C factor) is the one that watershed managers could influence most in order to reduce soil loss and alleviate the negative effects of climate change.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3