Session-Based Recommender System for Sustainable Digital Marketing

Author:

Hwangbo HyunwooORCID,Kim Yangsok

Abstract

Many companies operate e-commerce websites to sell fashion products. Some customers want to buy products with intention of sustainability and therefore the companies need to suggest appropriate fashion products to those customers. Recommender systems are key applications in these sustainable digital marketing strategies and high performance is the most necessary factor. This research aims to improve recommendation systems’ performance by considering item session and attribute session information. We suggest the Item Session-Based Recommender (ISBR) and the Attribute Session-Based Recommenders (ASBRs) that use item and attribute session data independently, and then we suggest the Feature-Weighted Session-Based Recommenders (FWSBRs) that combine multiple ASBRs with various feature weighting schemes. Our experimental results show that FWSBR with chi-square feature weighting scheme outperforms ISBR, ASBRs, and Collaborative Filtering Recommender (CFR). In addition, it is notable that FWSBRs overcome the cold-start item problem, one significant limitation of CFR and ISBR, without losing performance.

Funder

Keimyung University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3