Time-Lag Aware Latent Variable Model for Prediction of Important Scenes Using Baseball Videos and Tweets

Author:

Hirasawa KaitoORCID,Maeda KeisukeORCID,Ogawa TakahiroORCID,Haseyama Miki

Abstract

In this study, a novel prediction method for predicting important scenes in baseball videos using a time-lag aware latent variable model (Tl-LVM) is proposed. Tl-LVM adopts a multimodal variational autoencoder using tweets and videos as the latent variable model. It calculates the latent features from these tweets and videos and predicts important scenes using these latent features. Since time lags exist between posted tweets and events, Tl-LVM introduces the loss considering time lags by correlating the feature into the loss function of the multimodal variational autoencoder. Furthermore, Tl-LVM can train the encoder, decoder, and important scene predictor, simultaneously, using this loss function. This is the novelty of Tl-LVM, and this work is the first end-to-end prediction model of important scenes that considers time lags to the best of our knowledge. It is the contribution of Tl-LVM to realize high-quality prediction using latent features that consider time lags between tweets and multiple corresponding previous events. Experimental results using actual tweets and baseball videos show the effectiveness of Tl-LVM.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3