The Conception of Test Fields for Fast Geometric Calibration of the FLIR VUE PRO Thermal Camera for Low-Cost UAV Applications

Author:

Fryskowska-Skibniewska AnnaORCID,Delis PaulinaORCID,Kedzierski MichalORCID,Matusiak Dominik

Abstract

The dynamic evolution of photogrammetry led to the development of numerous methods of geometric calibration of cameras, which are mostly based on building flat targets (fields) with features that can be distinguished in the images. Geometric calibration of thermal cameras for UAVs is an active research field that attracts numerous researchers. As a result of their low price and general availability, non-metric cameras are being increasingly used for measurement purposes. Apart from resolution, non-metric sensors do not have any other known parameters. The commonly applied process is self-calibration, which enables the determining of the approximate elements of the camera’s interior orientation. The purpose of this work was to analyze the possibilities of geometric calibration of thermal UAV cameras using proposed test field patterns and materials. The experiment was conducted on a FLIR VUE PRO thermal camera dedicated to UAV platforms. The authors propose the selection of various image processing methods (histogram equalization, thresholding, brightness correction) in order to improve the quality of the thermograms. The consecutive processing methods resulted in over 80% effectiveness on average by 94%, 81%, and 80 %, respectively. This effectiveness, for no processing and processing with the use of the filtering method, was: 42% and 38%, respectively. Only high-pass filtering did not improve the obtained results. The final results of the proposed method and structure of test fields were verified on chosen geometric calibration algorithms. The results of fast and low-cost calibration are satisfactory, especially in terms of the automation of this process. For geometric correction, the standard deviations for the results of specific methods of thermogram sharpness enhancement are two to three times better than results without any correction.

Funder

Military University of Technology in Warsaw

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3