Dopaminergic Gene Dosage Reveals Distinct Biological Partitions between Autism and Developmental Delay as Revealed by Complex Network Analysis and Machine Learning Approaches

Author:

Santos André,Caramelo FranciscoORCID,Melo Joana Barbosa,Castelo-Branco Miguel

Abstract

The neurobiological mechanisms underlying Autism Spectrum Disorders (ASD) remains controversial. One factor contributing to this debate is the phenotypic heterogeneity observed in ASD, which suggests that multiple system disruptions may contribute to diverse patterns of impairment which have been reported between and within study samples. Here, we used SFARI data to address genetic imbalances affecting the dopaminergic system. Using complex network analysis, we investigated the relations between phenotypic profiles, gene dosage and gene ontology (GO) terms related to dopaminergic neurotransmission from a polygenic point-of-view. We observed that the degree of distribution of the networks matched a power-law distribution characterized by the presence of hubs, gene or GO nodes with a large number of interactions. Furthermore, we identified interesting patterns related to subnetworks of genes and GO terms, which suggested applicability to separation of clinical clusters (Developmental Delay (DD) versus ASD). This has the potential to improve our understanding of genetic variability issues and has implications for diagnostic categorization. In ASD, we identified the separability of four key dopaminergic mechanisms disrupted with regard to receptor binding, synaptic physiology and neural differentiation, each belonging to particular subgroups of ASD participants, whereas in DD a more unitary biological pattern was found. Finally, network analysis was fed into a machine learning binary classification framework to differentiate between the diagnosis of ASD and DD. Subsets of 1846 participants were used to train a Random Forest algorithm. Our best classifier achieved, on average, a diagnosis-predicting accuracy of 85.18% (sd 1.11%) on the test samples of 790 participants using 117 genes. The achieved accuracy surpassed results using genetic data and closely matched imaging approaches addressing binary diagnostic classification. Importantly, we observed a similar prediction accuracy when the classifier uses only 62 GO features. This result further corroborates the complex network analysis approach, suggesting that different genetic causes might converge to the dysregulation of the same set of biological mechanisms, leading to a similar disease phenotype. This new biology-driven ontological framework yields a less variable and more compact domain-related set of features with potential mechanistic generalization. The proposed network analysis, allowing for the determination of a clearcut biological distinction between ASD and DD (the latter presenting much lower modularity and heterogeneity), is amenable to machine learning approaches and provides an interesting avenue of research for the future.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3